Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Krishnan Srinivasan,^a Subbaiah Govindarajan^a and William T. A. Harrison^b*

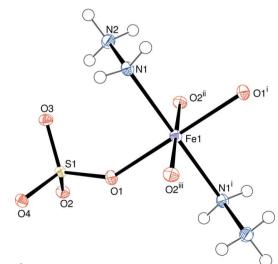
^aDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, India, and ^bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean $\sigma(\text{N}-\text{N}) = 0.004 \text{ Å}$ R factor = 0.032 wR factor = 0.076 Data-to-parameter ratio = 11.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


Iron(II) hydrazinium sulfate

The title compound, poly[[dihydraziniumiron(II)]-di- μ sulfato- $\kappa^4 O:O'$], [Fe(SO₄)₂(N₂H₅)₂]_n, contains fairly regular *trans*-FeN₂O₄ octahedra. The Fe atoms (site symmetry $\overline{1}$) are bridged by pairs of sulfate groups into infinite [100] chains, which are cross-linked by a network of N-H···O hydrogen bonds. Fe(N₂H₅)₂(SO₄)₂ is isostructural with its zinc, chromium(II) and cadmium-containing analogues.

Comment

The divalent-metal-hydrazinium sulfates of general formula $M(N_2H_5)_2(SO_4)_2$, where M = Cr, Mn, Fe, Co, Ni, Cu, Zn and Cd can be readily prepared by reacting a salt of the respective metal with hydrazinium sulfate in dilute sulfuric acid (Hand & Prout, 1966), although this method usually results in a microcrystalline product. Recently, we described the single-crystal structure of $Cd(N_2H_5)_2(SO_4)_2$ (Srinivasan *et al.*, 2006) and we now report the isostructural title compound, (I), Fe(N_2H_5)_2(SO_4)_2. The compounds Zn(N_2H_5)_2(SO_4)_2 (Prout & Powell, 1961) and Cr(N_2H_5)_2(SO_4)_2 (Parkins *et al.*, 2001) also share the same stucture.

Compound (I) contains *trans*-FeN₂O₄ octahedra (Fig. 1), in which the N atom is part of a hydrazinium $(N_2H_5^+)$ cation. The Fe atoms (site symmetry $\overline{1}$) are connected by pairs of sulfate groups into infinite chains that propagate in [100]. The intrachain Fe····Fe separation in (I) is equal to the *a* unit-cell dimension, *i.e.* 5.3306 (3) Å. The two distinct Fe–O bond lengths in (I) are similar (Table 1) and do not show the gross differences seen in the chromium and zinc analogues.

Figure 1

The asymmetric unit of (I) expanded to show the iron coordination (50% displacement ellipsoids; arbitrary spheres for the H atoms). Symmetry codes: (i) -x, -y, -z; (ii) x - 1, y, z; (iii) 1 - x, -y, -z.

© 2007 International Union of Crystallography All rights reserved Received 22 December 2006 Accepted 29 December 2006 The iron–sulfate chains in (I) are cross-linked by N–H···O hydrogen bonds (Table 2), resulting in the same hydrogenbonding network seen in the other analogues noted above. A well defined trifurcated N2–H3C···(O,O,O) interaction occurs (mean bond angle about H3C = 107.3°).

Experimental

The reaction of hydrazine monohydrate (N₂H₄·H₂O; 0.50 g, 10 mmol) and ethyl bromoacetate (1.671 g, 10 mmol) in 5 ml of dry ethanol resulted in the formation of a white solid containing hydrazinium bromide and ethyl hydrazinoacetate, as reported earlier (Srinivasan *et al.*, 2006). This white solid (0.236 g) was dissolved in water (30 ml) and mixed with an aqueous solution (30 ml) of FeSO₄·7H₂O (0.278 g, 1 mmol) and a few drops of conc. H₂SO₄. The resulting clear solution, with a pH of 2, was concentrated over a water bath to 20 ml and kept for crystallization at room temperature. After three days, many block-shaped light-green crystals of (I) had formed. These were recovered by filtration, washed with cold water and dried in air.

Crystal data

$[Fe(SO_4)_2(N_2H_5)_2]$	V = 219.41 (2) Å ³
$M_r = 314.08$	Z = 1
Triclinic, $P\overline{1}$	$D_x = 2.377 \text{ Mg m}^{-3}$
a = 5.3306 (3) Å	Mo $K\alpha$ radiation
b = 5.8205 (3) Å	$\mu = 2.23 \text{ mm}^{-1}$
c = 7.3835 (4) Å	T = 120 (2) K
$\alpha = 92.034 \ (3)^{\circ}$	Lath, pale green
$\beta = 103.313 \ (3)^{\circ}$	$0.05 \times 0.02 \times 0.01 \text{ mm}$
$\gamma = 99.237 \ (3)^{\circ}$	

3957 measured reflections

 $R_{\rm int} = 0.043$

 $\theta_{\rm max} = 28.0^\circ$

1004 independent reflections

911 reflections with $I > 2\sigma(I)$

Data collection

Nonius KappaCCD diffractometer ω and φ scans Absorption correction: multi-scan (SADABS; Bruker, 2003) $T_{\min} = 0.897, T_{\max} = 0.978$

Refinement

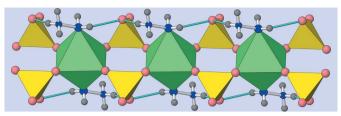

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0127P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.032$	+ 0.6538P]
$wR(F^2) = 0.076$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.12	$(\Delta/\sigma)_{\rm max} < 0.001$
1004 reflections	$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
90 parameters	$\Delta \rho_{\rm min} = -0.58 \text{ e} \text{ Å}^{-3}$
All H-atom parameters refined	

Table 1

Selected geometric parameters (Å, °).

Fe1-O1	2.109 (2)	Fe1-N1	2.184 (2)
Fe1-O2 ⁱ	2.147 (2)		
\$1-01-Fe1	142.94 (13)	S1-O2-Fe1 ⁱⁱ	128.85 (12)

Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z.

Figure 2

Polyhedral view of a fragment of the chain structure of (I). Colour key: Fe octahedra green, S tetrahedra yellow, O pink, N blue, H grey. The $H \cdots O$ portions of the hydrogen bonds are coloured light blue.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1A····O3 ⁱⁱⁱ	0.82 (4)	2.37 (4)	3.070 (3)	143 (3)
$N1 - H1B \cdot \cdot \cdot O4^{iv}$	0.82 (4)	2.12 (4)	2.867 (3)	151 (4)
$N2-H2A\cdots O4^{iii}$	0.88 (4)	1.96 (4)	2.799 (3)	160 (4)
$N2 - H2B \cdot \cdot \cdot O3$	0.80 (4)	2.02 (4)	2.769 (4)	156 (4)
$N2-H2C \cdot \cdot \cdot O2^{v}$	0.82 (4)	2.51 (4)	2.849 (3)	106 (3)
$N2-H2C \cdot \cdot \cdot O2^{iv}$	0.82 (4)	2.32 (4)	3.011 (4)	141 (4)
$N2-H2C\cdotsO1^{vi}$	0.82 (4)	2.45 (4)	3.073 (3)	133 (4)

Symmetry codes: (iii) -x + 1, -y, -z + 1; (iv) x - 1, y - 1, z; (v) -x + 1, -y, -z; (vi) x, y - 1, z.

The H atoms were located in difference maps and their positions and U_{iso} values were freely refined.

Data collection: Collect (Nonius, 1998); cell refinement: *HKL* SCALEPACK (Otwinowski & Minor 1997); data reduction: *HKL* DENZO and SCALEPACK (Otwinowski & Minor 1997) & SORTAV (Blessing 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

We thank the EPSRC National Crystallography Service (University of Southampton) for the data collection.

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Bruker (2003). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hand, D. W. & Prout, C. K. (1966). J. Chem. Soc. A, pp. 168-171.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Parkins, A. W., Prince, P. D., Smith, R. A. L. & Steed, J. W. (2001). Acta Cryst. C57, 670–671.
- Prout, C. K. & Powell, H. M. (1961). J. Chem. Soc. pp. 4177-4182.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Srinivasan, K., Govindarajan, S. & Harrison, W. T. A. (2006). Acta Cryst. E62, i219–i221.